[sixties-l] Secrets of an acid head

From: radman (resist@best.com)
Date: Fri Jun 22 2001 - 19:26:57 EDT

  • Next message: radman: "[sixties-l] Kerrey threatened with lawsuit over Vietnam deaths"

    Secrets of an acid head


    Tripping on hallucinogenic drugs reveals more about our inner selves than
    the hippies ever bargained for, says

    by Dana Mackenzie
    New Scientist magazine, 23 June 2001.

    IN A DORM ROOM dimly lit by a lava lamp, a freshman awaits the beginning of
    his first LSD trip. Slowly, the walls come alive and begin to dance with
    colour. And then he sees whirling spirals of stars that disappear into the
    distance. A network of cobwebs that grows across the room. An infinite
    subway tube, surrounded by fluorescent lights...
    Across campus, his science teachers experience their own psychedelic
    visions, but without resorting to illegal mind-altering substances. Jack
    Cowan, a mathematician and neuroscientist at the University of Chicago, has
    built a neural network so powerful it can trip out. His computer's
    hallucinations match with almost spooky accuracy the visions of acid
    trippers, shamans and seers, visions that have always been interpreted as
    revelations from a transcendental consciousness.
    Now, after more than two decades, Cowan and his team think they have found
    where hallucinations really come from. And there's nothing transcendental
    about it. An LSD trip is really a journey into the brain, says Cowan. "It's
    just the innate tendency of the brain to make patterns when it goes unstable."
    Cowan's goal is to find out how the brain makes sense of the visible world,
    not when we're tripping, but under ordinary circumstances. In the process,
    he may learn how it breaks down in other extraordinary conditions, such as
    migraine headaches. Hallucinations could even offer a route to the more
    profound depths of the mind, to emotions and conscious thought.
    Hallucinations seem to come in an endless variety, as individual as dreams.
    So it seems improbable that they can even be categorised, never mind
    calculated by a computer. But in the 1920s, Heinrich Klver, a
    neuroscientist at the University of Chicago, discovered they did indeed
    fall into a number of distinct categories. Klver interviewed dozens of
    people who had taken the drug mescaline, and even took it himself. Keeping
    a commendably straight head, Klver eventually saw patterns in the patterns.
    In the earliest stages of a trip, most subjects reported seeing abstract,
    geometrical images. Other writers have noted the same thing. "The typical
    mescaline or lysergic acid experiment begins with perceptions of coloured,
    moving, living geometrical forms," wrote Aldous Huxley in 1954 in Heaven
    and hell. "In time, the pure geometry becomes concrete, and the visionary
    perceives, not patterns, but patterned things, such as carpets, coverings,
    mosaics." Klver classified these patterns into four types or
    "form-constants": tunnels, spirals, cobwebs and honeycombs.
    Unlike Huxley and Klver, Cowan has never sampled the drugs he studies. "I
    feel bad about it," he says. "I have to rely on all these reports in the
    literature." He also hears plenty of personal accounts from students and
    others who attend his lectures. "Some people see these illusions when
    they're going to sleep or waking up," Cowan says. "People have seen them
    after taking anaesthetics. People claim to see them when they meditate, or
    have so-called near-death experiences." Cowan believes that the "tunnel of
    light" illusion commonly reported in near-death experiences is simply the
    first of Klver's four form-constants.
    Cowan was turned on to the study of hallucinations from an unexpected
    direction. In 1977 he was working on
    pattern formation with graduate student Bard Ermentrout when he stumbled
    across illustrations of Klver's
    patterns. "We saw immediately that the hallucination patterns were similar
    to convection patterns," says Cowan.
    The convection of hot water involves a delicate interplay of forces. When a
    pan of water is heated from below, the hot water at the bottom is more
    buoyant than the water above, and tries to rise. If the temperature
    difference is not too great, the lower layer sheds its heat by diffusion
    before it can rise very far, so the water remains stable. But at a certain
    critical temperature, diffusion is not enough to cool off the lower layer,
    so plumes of hot water start to rise. Between each pair of rising plumes,
    cold water descends, so a pattern spontaneously emerges: rolling tubes of
    water that form parallel stripes, or square or hexagonal cells. Cowan
    guessed that hallucinations must also be spontaneous patterns of activity
    produced by two competing forces, this time in the brain. One, like the
    water's buoyancy, tends to excite neurons while the other, like the
    diffusion of heat, tends to calm them down. He speculated that this could
    happen in the primary visual cortex, sometimes called V1. This is a layer
    of tissue two to three millimetres thick at the back of the brain which
    serves as the first layer of processing for images gathered by the retina.
    To test their idea, Ermentrout and Cowan developed a mathematical model of
    V1 and gave it a dose of virtual LSD. Their model reflects the fact that
    each neuron tends to excite its neighbours and inhibit those a little
    farther away. Then when the eye sees a large, featureless object, like a
    big red blob of paint, every neuron in the middle of the image will be
    excited by nearby neurons and inhibited by those farther away. So it
    receives no net input from other neurons. It's the brain's way of saying,
    "There's nothing interesting happening here."
    LSD upsets this balance. One of the effects of the drug is to allow neurons
    to fire when there is nothing in the visual field. Ordinarily, a neuron
    won't start firing unless the input from the retina and from neighbours
    exceeds a critical threshold. This ensures that if a neuron fires by
    mistake, it won't convince its neighbours to fire and the activity dies
    out. But drugs can lower the threshold, LSD does it by making the brainstem
    secrete less of the inhibitory chemical serotonin. If the threshold is
    lowered far enough, then excitation starts to beat inhibition, and
    spontaneous waves of activity form in the brain. It's like turning up the
    heat under the pan of water. The first patterns that form will be the same
    ones that are seen in the water: parallel stripes, checkerboards and hexagons.
    So why don't LSD users see parallel stripes across their visual field?
    Because these patterns are in the cortex, not the retina, Cowan reasoned. A
    lot of cortical real estate is devoted to objects close to the centre of
    the field of vision, where our sight is sharp, while relatively little is
    used for peripheral vision. Mapped onto the cortex, an ordinary scene is
    grossly distorted: objects near the centre loom large, taking up most of
    the brain area. When you run this distortion backwards, evenly spaced
    parallel lines in the cortex appear sucked together into the centre of the
    visual field, creating the visual impression of either a spiral or a
    tunnel. The regular checkerboard and hexagon patterns turn into spiralling
    squares or hexagons.
    So more than half a century after Klver set out his form-constants, two of
    them were finally explained. LSD users see spirals and tunnels because
    those are the real-world objects that fit the patterns of neural firing in
    their cortex. Timothy Leary, the guru of "tune in, turn on, drop out"
    fame, speculated in The Psychedelic Experience, "These visions might be
    described as pure sensations of cellular and sub-cellular processes." So
    just as Leary guessed, the spaced-out brain is tuning into its own
    But what about the other two form-constants, the cobweb and honeycomb
    illusions? These are both lacy, filigree patterns, while water boils in fat
    rolls, so it's obvious the convection analogy won't work here. Cowan was
    confidant that his theory would provide the framework to understand these
    hallucinations, too.
    In the 1980s, it became clear that the neurons in V1 are not sensitive
    simply to the position of an image on the retina. Most of them are
    sensitive to edges, firing if they sense an edge passing through a
    particular point in the visual field but remain silent if that point is
    similar to its surroundings. These cells are arrayed in little patches
    called hypercolumns that represent a particular part of space (see Diagram,
    left). Within the hypercolumn, each neuron responds to an edge at a
    slightly different orientation.
    Instead of signalling to their neighbours in the same hypercolumn, these
    neurons contact their counterparts in different columns, which represent
    similar orientations in slightly different parts of space. Then, if there
    really is an edge, neurons with the right orientation excite each other, so
    the brain is more likely to detect it.
    These long-range connections seemed essential to understanding the last two
    hallucination types, but they added a new level of complexity to Cowan's
    mathematical model of the cortex. Hot water was no longer a good analogy,
    because the forces at work there, buoyancy and viscosity, are all short
    range. Now equations were needed to describe something long range and
    direction-sensitive. The maths turned out to be like those of a hot gas in
    a magnetic field.
    Cowan and his graduate student Matthew Wiener programmed in these
    equations, and found many possible waveforms could result. But they
    couldn't tell which of these patterns would be the first to appear
    spontaneously. They needed someone who could combine an expert's
    understanding of quantum mechanics and neuroscience, and in 1998, Cowan
    found just the person. Paul Bressloff of Loughborough University in
    Leicestershire had trained as a specialist in quantum gravity, then taken a
    detour into neural networks. In a few months of intense work at Chicago, he
    helped Cowan and Marty Golubitsky of the University of Houston work out the
    waves of activity that should emerge spontaneously among
    orientation-sensitive cells. The results appeared earlier this year in
    Philosophical Transactions of the Royal Society (vol 356, p 1).
    The winning patterns were those in which the edges naturally close up into
    small square or hexagonal cells. Cowan's theory precisely reproduces
    Klver's two missing form-constants. When the fine-edged squares and
    hexagons on the cortex are filtered back through the retinal map, they look
    like lacy cobwebs and honeycombs.

    So far so good. But has Cowan done any more than confirm a wiring pattern
    for the brain that neuroscientists had already worked out? He points out
    that to understand how the brain works, we need more than wiring: we have
    to know how these circuits actually behave.
    In fact, Cowan's model does hint at this.
    One unexpected outcome is that subtle changes in the wiring of the model
    brain can cause significant changes to its preferred hallucination
    patterns. For example, if the long-range connections in the model always
    run between edge neurons that represent identical orientations, would
    generate hallucinations resembling herringbone twill. Clearly our brains
    are not wired this way; if they were, who knows what effect psychedelic
    visions of tweed blazers might have had on 1960s fashion. To produce
    cobwebs and hexagons, we actually need the connections to be a little more
    slapdash. Perhaps the human edge- detection system is wired this way
    because it helps us spot small, closed contours.
    On the other hand, the herringbone patterns may emerge if the chemical
    stimulation is changed. Perhaps the theory can explain other kinds of
    visual disturbances that were thought to be unrelated to LSD
    hallucinations, such as the auras and zigzag patterns seen by people
    suffering a migraine attack. If so, it could tell us what changes in the
    brain cause migraines, and perhaps set us on course for a cure.
    Lurking in the background is the much bigger issue of where the mind comes
    from. To what extent is the mind, and all the rich variety of inner
    experiences that gives us a sense of self, simply a product of
    physiological processes in the brain? Hallucinations could be a perfect
    place to start answering this question.
    The apostles of the psychedelic sixties scorned the scientific approach to
    understanding an LSD trip. "Bobbing around in this brilliant, symphonic sea
    of imagery is the remnant of the conceptual mind," Leary wrote. "On the
    endless watery turbulence of the Pacific Ocean bobs a tiny open mouth,
    shouting (between saline mouthfuls), ^A'Order! System! Explain all this!'"
    To appreciate a hallucination, Leary said, you have to let go of the urge
    to rationalise it.
    Tom Wolfe pitched in with The Electric Kool-Aid Acid Test. "The White
    Smocks liked to put it into words, like hallucination and dissociative
    phenomena. They could understand the visual skyrockets. Give them a good
    case of an ashtray turning into a Venus flytrap or eyelid movies of crystal
    cathedrals, and they could groove on that... That was swell. But don't you
    see?--the visual stuff was just the dcor with LSD... The whole thing was
    ... the experience ... this certain indescribable feeling ... The
    experience of the barrier between the subjective and the objective, the
    personal and the impersonal, the I and the not-I disappearing ... that
    Cowan makes no apologies for being one of the White Smocks. He thinks that
    the "visual skyrockets" and that "certain indescribable feeling" are part
    and parcel of the same experience. As the drug penetrates to deeper and
    deeper areas of the brain, visual layers, cognitive layers, emotional
    layers and, finally, whatever part of the brain gives us our sense of
    self-awareness, our subjective experience becomes enormously more
    complicated and richer. And yet what's going on at the cellular level may
    not be so different at each layer.
    "Does that mean that everything can be observed and described?" Cowan asks.
    "I happen to believe the answer is yes. I don't think there's anything in
    the brain that science can't ultimately deal with." But the answers aren't
    going to come along tomorrow. "There are a hundred vision chips, a hundred
    sound chips. We now understand a bit more about one of the vision chips,"
    he says. Cowan is already planning to look at other aspects of visual
    hallucinations, such as texture and size perception.
    Journeying deeper still into the mind might not be much harder. The
    neocortex, the layer of the brain that includes V1, is the part that
    evolved most recently. It is also the part that supposedly makes humans so
    intelligent. Because it hasn't been around long, its cells are all
    structurally quite similar, even if their functions are quite different.
    "The reason this is a note for optimism," says Gary Blasdel of Harvard
    University, "is that when you really understand the operations that go on
    in a particular cortical area, it will generalise to other areas." Cowan's
    computerised visions might just be the beginning of a really cool trip.

    Further reading:
    The Doors of Perception by Aldous Huxley, Flamingo (1994)
    "Hallucinations" by R. K. Siegel, Scientific American, vol 237, p 132 (1977)
    Dana Mackenzie is a mathematics and science writer based in Santa Cruz,

    This archive was generated by hypermail 2b30 : Mon Jun 25 2001 - 17:42:31 EDT