
Unravelling Graph Interchange File Formats

Matthew Roughan

ABSTRACT
Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—graphs, file for-
mat

1. INTRODUCTION
A short search of the Internet revealed that there are well

over 60 formats used for storage and exchange of graph data:
that is networks of vertices (nodes, switches, routers, ...)
connected by edges (links, arcs, ...).

Every new tool for working with graphs seems to come
with its own new graph format. There are reasons for this:
new tools are often aimed at providing a new capability.
Sometimes this capability is not supported by existing for-
mats. And inventing your own new format isn’t hard.

More fundamentally exchange of graph information just
hasn’t been that important. Standardised formats for im-
ages (and other consumer data) are crucial for the function-
ing of digital society. Standardised graph formats affect a
small community of researchers and tool builders. But this
community is growing, and the need for interchange of in-
formation is likewise growing, particularly where the data
represent some real measurements which are hard to collect
when and as needed, and so scientists need to be able to
share.

So the current state of affairs is ridiculous. The existing
formats do include many of the features one might need, and
some are quite extensible, so the bottleneck is not the ex-
isting formats so much as information about those formats.
This is the gap this monograph aims to fill.

Many of the formats presented may seem obsolete. Some
are quite old (in computer science years). Some have clearly
not survived beyond the needs of the authors’ own pet project.
However, we have listed as many as we could properly docu-
ment, partially for historical reference, and partially to show
the degree of reinvention in this area. But more importantly,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

because old and obscure isn’t bad. For instance NetML, a
format that doesn’t seem to be used at all by any current
toolkits, incorporates some of the most advanced ideas of
any format presented. A good deal could be learnt by cur-
rent tool builders if they were to reread the old documenta-
tion on this format.

It is important to note that this paper does not present
yet-another format of our own. It is common, in this and
other domains, for the discussion of previous works to be
coloured by the need to justify the authors’ own proposal.
Here we aim to be unbiased by the need to motivate our
own toolkit, and so (despite temptation) do not provide any
such.

We do not argue that new graph formats should never be
developed. In some applications new features are needed
that are not present in the existing formats. However, it is
critical that those who wish to propose new ideas should un-
derstand whether they are really needed, or whether existing
tools provide what they need. Moreover, in studying the ex-
isting formats, and their features, we learn what should be
required in any new format to make it more than a one-shot,
aimed at only one application.

2. BACKGROUND
A mathematical graph G is a set of nodes (or vertices) N

and edges (or links or arcs) E ⊂ N ×N .
Graphs (alternatively called networks) have been used for

many years to represent relationships between objects or
people.

There are many subtypes of graphs, and generalisations,
some of which we shall mention below.

Additional information is often added to a graph: for in-
stance

• node or link labels (names, types, ...);

• values (distances, capacity, size, ...); or

• routing (paths taken when traversing the graph).

It has been necessary for many years for researchers in so-
ciology, biology, chemistry, computer science, mathematics,
statistics and other areas to be able to store graphs, and
share them. They have done so by sharing files. As a result
portable file formats for describing graphs have been around
for decades.

This document is concerned with providing information
about these formats, specifically with the intention of mov-
ing towards a smaller number of standard formats (the cur-
rent trend seems to be progressing in the other direction).

3. DESCRIPTORS AND DISCRIMINATORS
In order to describe the formats we will consider here,

we need some simple means to compare and contrast. Of
a necessity, these will oversimplify some of the issues. For
instance, some features that exist in principle in the format
may not be supported in any software.

What’s more, many descriptions of file formats are impre-
cise. It is common to describe the format by reference to
examples. Although useful for simple cases, these leave out
important details: for instance: the character set supported,
and even more surprisingly, the format of identifiers. It is
often vaguely suggested that these are numbers, but with-
out formal definition of what is allowed (presumably non-
negative integers, but are numbers outside the 32 bit range
supported?).

In the following, we make the best estimate of the capa-
bilities of each format through reference to online documen-
tation, and through a survey of the file format creators1. In
many cases the results are inferences, so in this section we
will outline the features we describe, and the assumptions
made in compiling our data.

There are three main types of descriptors here:

file type : these are simple issues of the type of file storing
the data: binary vs ASCII, etc.

graph types : this refers to the nature of the graph data
that can be stored.

attributes : these are features related to supplemental data
about nodes and edges, such as labels and values as-
sociated with these.

general : this is a grab bag for additional features that
don’t fit in either of the previous classes.

We’ll describe each of these in detail below, and then provide
a table of the features vs file formats.

One last point, this is not intended as a pejorative list.
We do not mean to imply that having a feature is good or
bad (though vague descriptions do seem fairly unhelpful).
The aim is to provide potential users with the background
to choose the right format for their purposes.

3.1 File Type

binary/text : this is, in principle, a simple distinction in
file type. However, text files today can use multiple
different character sets, and this is important because
some graphs will be labelled with non-English char-
acter sets. However, the majority of file-format defi-
nitions leave unspecified the character set to be used.
We assume here that the character set is ASCII, unless
there is some indication otherwise, either an explicit
statement, or in the case of applications of XML it is
assumed that the character set supported is Unicode.

representation : there are quite a few methods to repre-
sent a graph:

matrix : This is simply the graph’s full adjacency
matrix.

edge : This is a list of the graph’s edges.

1For which purpose this current document is being used.

smatrix : The matrix representation is poor for sparse
graphs, which are common in real situations. How-
ever, some tools actually store a sparse matrix,
which is almost equivalent to an edge list. There
is a subtle difference in that a matrix view of the
edges in a network cannot contain much detail
about the edges (only one number), and so we
have a separate name, smatrix, for formats that
use this type of representation.

neighbour This is a list of the graph’s nodes, each
giving a list of neighbours for each node.

path : One can also implicitly represent a graph as a
series of path descriptions (essentially a path is a
list of consecutive edges). This could be useful,
for instance, with a tree or ring.

Moreover, graph data is often derived from path
data, i.e., a series of paths are analysed, and the
edges on these become the graph. In other cases,
one might like to store path information, for in-
stance related to routes used on a graph, along
with the graph.

constructive : Graphs can often be described in terms
of mathematical operations used to construct the
graphs: for instance graph products on smaller
graphs [1]. See [2] for a description of “levels” of
graph formats.

Apart from simple incremental construction, the
only format that seems to allow this is NetML [2].

procedural : Many graphs can be concisely defined
by a set of procedures, rather than explicit defi-
nition of the nodes and links. This type of graph
format could be very concise, but verges on creat-
ing another programming language. In fact, many
graph libraries for particular programming lan-
guages essentially provide this, but obviously in a
non-portable (between languages) way.

The only generic (language independent) format
that seems to allow this is NetML [2].

Any procedural approach admits the possibility of
defining a method for constructive graph descrip-
tion, but we do not automatically count any pro-
cedural approach as constructive, unless it pro-
vides explicit graph-related operations as part of
the toolkit.

These representations are given varying names in the
literature, but we use the names above to be clear.

The representation is important: for a graph with N
vertices and E edges, the adjacency matrix requires
O(N2) terms, the edge list O(E) terms, and the neigh-
bour list O(N+E) terms. However, the terms in a ma-
trix are {0, 1} whereas the terms in the edge and neigh-
bour lists are node identifiers (consider they might be
64 bit integers), so the size of a resulting file based on
each representation depends on many issues, including
the way the data is stored in the file. No approach is
universally superior.

Moreover, some may be easier to read and write: for
instance a neighbour listing may be slightly more com-
pact than an edge list, but it has the same number of

elements per line, potentially making it easier to per-
form IO in some languages.

Some graph file formats allow alternative representa-
tions, and so we list all that are possible. It seems rare
(for obvious reasons) to allow a mixed representation.

structure: we use this field to describe how the file format’s
structure is defined. The cases are:

simple : the typical approach to create a graph for-
mat is to use one line per data item (a node, an
edge, or a neighbourhood), with the components
on a line separated by a standard delineator (a
comma, tab, or whitespace). There are many
variations on this theme, some more complex than
others, for instance including labels, comments
or other information. These formats are usually
specified by a very brief description and one or
two examples. They rarely specify details such as
integer range or character set.

intermediate : this is a slight advance on a simple file
format, in that it includes some grammatical ele-
ments. For instance, the file may allow definition
of new types of labels for objects. However, in
common with simple files, these are usually only
specified by a very brief description and one or
two examples, not a complete grammar.

BNF : means that the file format is described using
a grammar, loosely equivalent to a Backus-Naur
Form (BNF). This is perhaps the most concise,
precise description. When done properly it pre-
cisely spells out the details of the file in a rela-
tively short form.

XML, JSON, SGML, ... : many file formats ex-
tend XML, JSON, SGML, or similar generic, ex-
tensible file formats. This is a natural approach
to the problem, and allows a specification as pre-
cise as BNF, though only through reference to
the format being extended. Thus it is precise,
but sometimes rather difficult to ascertain all of
the details, unless one is an expert in XML, etc.

On the other hand, these approaches draw on the
wealth of tools and knowledge about these data
formats. On the other hand again, to use those
tools the model of your graph object has to map
to the XML model (or at least be easily trans-
formed into that form).

Tcl, Lisp, ... : as noted above one approach to defin-
ing a graph is procedural. Most of the approaches
that allow this are extensions or libraries for com-
mon programming languages.

We will not list every programming language and
library as a data format though because, gener-
ically, such approaches are not portable between
programming languages. We do mention a few
formats though (cypher, ns-2 and S-Dot), because
translators exist from/or to these from other data
formats.

single or multiple files : most data files are a single file,
but some formats require multiple files, for instance, a
separate files for the lists of nodes and edges. Other

formats allow supplementary information in additional
files, so multiple files aren’t mandatory. We have only
classified the files by whether multiple files are allowed,
not whether they are mandatory (because the later
requires a distinction about what mandatory would
mean: does it mean they are required to support basic
features or advanced features?)

must be ordered : most files have some requirement for
ordering, for instance a header, or tags around data,
so we are not concerned by that aspect of ordering.
We are concerned with whether elements of the actual
data must be presented in some type of ordering. For
instance, do nodes have to be defined before we can
create an edge joining them? This is often unspecified,
particularly in simple formats, so we draw conclusions
from the examples presented.

The decision to list a particular file as ordered can seem
a little arbitrary, but the importance of it is really
whether the file can be read in one (simple) pass or
not. Ordering (e.g., defining nodes before using them)
can potentially help in a one pass read. This is the
information we are interested in expressing.

integral meta-data : meta-data is data about the graph:
for example, its name, its author, the date created, and
so on. This is very important data, but many formats
provide no means to include it in the file, and instead
rely on external records. We refer to meta-data as
integral if it is contained in the file itself.

Some formats allow meta-data through unstructured
comments. This is better than nothing, but lack of
structure of the comments means these are not ma-
chine readable, in general.

Some file formats provide only a limited range of meta-
data fields, whereas others are arbitrarily extensible.
At the moment we don’t distinguish between these as
it is difficult to tell the difference in many cases.

built-in compression : it is easy enough to compress a
graph-file using common utilities such as gzip, and typ-
ical compression ratio will be reasonably good as graph
files often have many repeated strings. However, one
format provides for compression of the graph as it is
written, in much the way image file formats allow in-
trinsic compression of the image. Such an approach
requires a graph-compression algorithm, though two
other formats provided some crude mechanisms to re-
duce the size of the file.

3.2 Graph Types

directed/undirected : The two basic forms of graph are
the directed and undirected graph. In the former edges
(or arcs) imply a relation from one node to another.
In the later an edge implies a relationship in both di-
rections.

Some graph formats specify one or the other; others
allow the user to specify which; and the most general
allow the user to specify directed (or not) for each edge.

The difficulty with this is that many graph formats fail
to specify anything. We assume that, in the absence of
explicit statements to the contrary, a graph format is

directed if the edges/arcs are specified by source/target
or from/to, or some other directional nomenclature.
We also assume that matrix formats are directed unless
there is specific mention of mechanism to represent the
upper triangular part of the matrix alone.

Finally, in one case, the format is explicitly restricted
to DAGs (Directed Acyclic Graphs).

multi-graph : a multi-graph is a graph generalisation that
allows (i) self-loops, and (ii) more than one edge be-
tween a single pair of nodes.

Some formats specifically allow, or disallow multi-graphs.
A few allow loops, but not multi-edges. Many, how-
ever, say nothing on the topic. We assume in this
case that formats presenting either matrix or neigh-
bour representations don’t allow multi-graphs. It is
technically possible to represent a multi-graph in these
cases, but this would require special processing of the
information, and unless we see an indication this is
present we assume it is not. Edge lists, however, can
easily cope with multi-graphs. We suspect it is left
to the software supporting the data format to make a
decision about how to deal with these cases, and the
decision may be inconsistent between supporting soft-
ware. Hence it seems important that when an edge-
based representation leaves the question unspecified,
we say this.

hyper-graphs : a hyper-graph allows edges that connect
more than two nodes. These are useful for some prob-
lems: for instance indicating a multi-access medium in
a computer network (such as a wireless network).

Support for hyper-graphs requires specialised data struc-
tures for hyper-edges, so unless a format explicitly
states it can support these and presents the mecha-
nism we assume it cannot.

hierarchy : it is common for graphs to have sub-structure,
for instance nodes that themselves contain graphs.

Several formats provide mechanisms to record this sub-
structure. Unfortunately, there does not seem to be a
consistent definition of this type of structure, and so
we see differences not just in the representation, but
also what exactly is being represented.

We don’t try to list this level of detail here though, we
simply note whether the format provides this feature.

meta-graph : a meta-graph [3] is a generalisation of a
graph, multi-graph, hyper-graph, and hierarchical graph.
As far as we know, no format yet supports meta-graphs2,
but this is included as a feature as an indication of the
type of feature that might require a new format, or
extended version of an existing format.

3.3 Attributes

edge weights : a very common requirement is to store a
numerical value associated with an edge. Generically,
we call this a weight. Many formats provide the facility
to keep one such value.

2Note the term “meta-graph” is somewhat overloaded, e.g.,
there is at least one package called metagraph that has noth-
ing to do with the mathematical meta-graph.

multiple attributes : Some formats allow one to keep
multiple labels (numerical or otherwise) for each node
and/or edge.

For some formats these are fixed (e.g., they allow a
name and a value), whereas others allow arbitrary lists
of attributes. We don’t yet distinguish these two cases.

default values : specifying the value of a weight or at-
tributed for every edge or node can be laborious (if it
has to be done by hand), and wasteful of space. More-
over, it makes it hard to see structure in the data.
Simply providing a default value for the common case
can improve the situation. We include here the case of
simple inheritance of values through a tree of “class”
structures on the objects. For instance, nodes can be
given a type which conveys a default value to be over-
ridden by a more specific type or particular value. No-
tice here we are no speaking of inheritance through the
graph itself, but a structure on top of the graph.

multiple inheritance : a few formats allow values to be
derived through multiple inheritance of values from
multiple classes the belong to. Thus allowing a node
to have, for instance, a type “router” which conveys
that it is an Internet router, with appropriate charac-
teristics for such a device, from vendor “Cisco” which
appropriate characteristics for that vendor.

Once again, inheritance is not through the structure
of the graph, but through a further structure defined
on the graph objects.

visualisation data : files that allow multiple (extensible)
attributes can always provide data to be used in vi-
sualising the graph, but here we refer to formats that
explicitly provide such data. It needs to be explicit
because it has a particular use in software, different
from the use of more arbitrary associated data such as
labels.

The level of visualisation data varies dramatically: some
formats only allow position information for nodes, whereas
others allow SVG definitions to be used in drawing the
nodes. Still others provide guidance about which lay-
out algorithms to use in displaying the graph.

There is not space here to document all of the varia-
tions possible, so we simply indicate whether any such
data is defined or not.

ports : this is a specialised piece of layout information:
often ports are specified by a compass direction, and
indicate where on a node the link should join to it.
We include it separate to the previous field because
port-based information can also carry semantic infor-
mation about the relationship between links on a com-
plex node: e.g., the arrangement of links on a real
device like an Internet router.

temporal data/dynamics : a topic of recent interest is
analysis/visualisation of graphs as they change. One
way to store this information is as a series of “snap-
shot” graphs, but storing it all together in the same file
has some appeal. A few formats provide some variant
on this: allowing links or nodes to be given a lifetime,
or proving “edits” to the graph at specific epochs.

3.4 General

extensible : some formats allow extensibility in varying
forms. We only consider them to have this facility,
however, if they provide an explicit mechanism. For
instance, we do not regard all XML derivatives as in-
trinsically extensible because they could, in principle,
be extended using standard XML techniques. The for-
mat has to explain the explicit mechanism whereby it
is extended.

Simply adding extra attributes is not considered ex-
tensibility.

schema checking : a format that provides an explicit mech-
anism to check that a file is in a valid format is useful.
We only say it has this facility if a tool exists to per-
form the check (a schema-checking program, DTD, or
other similar formal tool).

checksums : It is possible for large data files to become
corrupted. A common preventative (or at least check
for this problem) is to use a checksum. This is pos-
sible for all files, but we say that a given format has
this capability if it includes it as a internal component
(usually checking everything except the checksum it-
self). Only a few formats contain this check.

external data references : Some formats allow reference
to external files. This could be for visualisation data,
meta-data, or other purposes. Again, we look for an
explicit explanation of the mechanism, not a generic
belief that it is inherited from the parent file format.

multiple graphs : Some formats allow multiple graphs to
be held in one file. Again, we only count this as a
feature if the specification explains how explicitly.

incremental specification : A small number of formats
that present multiple graphs allow these graphs to be
specified incrementally. This is subtly different from
including temporal dynamics, as there is no implica-
tion of time, and the different graphs could potentially
be unrelated (for instance, this might be used to de-
scribe graph edit distance problems).

In a sense incremental specification is a simple case of
constructive graph definition, but it is a very limited
case, with specific application, so we list it separately.

4. THE FILE FORMATS
This list is incomplete. There are some formats that we

have seen mentioned, but been unable to find documentation
for (e.g., Gem2Ddraw). There are undoubtedly others that
we have missed, and there are a few that we have lumped
together under the general heading of “Adj” because they
provide a simple delimited edge list.

Moreover, we have deliberately omitted generic file for-
mats that could, in principle, contain a graph: e.g., XML,
JSON, SGML, RDF, Avro, YAML, and so on, unless there is
a specific extension of these designed to provide support for
graphs, in which case we list the specific not the generic. For
instance, several software tools say that they can read/write
JSON or other generic serialisations of data, but without
details of exactly what is being serialised, then these are not
useful interchange formats.

We also aim to avoid, for simple practicality, formats that
represent data that has a graph structure, but whose main
content is not the graph. For instance the HTML WWW:
the graph structure of this is vastly smaller than the content
and HTML is intended to store both in a distributed fashion.
If one wished to represent the graph of the WWW, then
another format seems indicated. Other examples include
SBML (the Systems Biology Markup Language), and FOAF
[4].

The attached spreadsheet contains the currently
known formats, and a first draft of features for these
formats. It is to be considered unverified and poten-
tially highly inaccurate at this point.

Additional formats are welcome, but we plan to add only
those which are aimed at portable data exchange, not in-
ternal data formats for use only within one tool (unless the
internal format illustrates a particular issue very well).

5. DECISIONS
The list above is not intended to be pejorative. However,

it is inevitable that potential users need to make decisions
about which format to use. There are several issues that
need be considered in such a decision, and although the first
is the feature list required, there are others:

data size : the size of the graph data to be recorded and
used is an important factor in file format decisions.
This is sometimes glossed over when XML-style for-
mats are considered: these are very redundant for-
mats, and hence much larger than needed, but they
compress well. Hence, the compressed version may
be no longer than a tighter initial specification. How-
ever, the issue of read/write time (and indeed compres-
sion/decompression time) still depends greatly on the
format’s wordiness. Large graphs need tighter formats:
either binary formats, or at least those that avoid un-
necessary bloat.

On the far end of the spectrum is the possibility of
graph-specific compression being part of the storage
process (much as many image formats provide image
compression as an integral features). Only one format
we found provides true graph-based compression: BV-
Graph.

edge density : edge density affects the choice of best rep-
resentation of a graph. Very sparse graphs are best
represented by edge lists, moderately sparse graphs are
(perhaps) slightly better stored as neighbour lists, and
dense graphs may be better stored as a full adjacency
matrix.

access method : most graph formats are designed to be
read serially directly into memory in their entirety.
None we saw provided support for random (or indexed
subgraph) access to part of a graph. Few formats
seem to specifically address this, though some public
databases of graph data provide interfaces for querying
components of the graph.

In other cases, a single graph might be part of a larger
database, and this seems only to have been addressed
by ad-hoc mechanisms.

human readability : Implicitly we need the file to be ma-
chine readable, but a file that is more easily compre-

hended by humans is potentially better because it is
easier to enter and check. This might seem strange to
consider, but many of graph examples were entered at
least in part by hand. Human readability requires a
text file in a logical format, but it also needs to avoid:
(i) bloat, which distracts the reader with unnecessary
text, and (ii) the file to be organised neatly. XML for-
mats often fail on these: the first because of the volume
of tags, and the second because they allow organisa-
tions which are unreadable, e.g., with all the text on
one line.

Ultimately, human readability is a highly subjective
criteria. Some people may find XML easy to read, and
others get distracted by the tags. As such, we won’t
comment on it further here.

documentation : Through compiling the information used
in this paper it has become obvious that a key limi-
tation of many formats is incomplete documentation.
Hidden assumptions, specification by (limited) exam-
ples, and/or documentation by source code are all com-
mon. Ideally, any truly portable format should have a
complete, highly-specific schema; human readable doc-
umentation (with examples); and source code. All of
these together provide the ideal documentation.

support : Finally, the support for the format in a variety
of tools is a crucial requirement for exchange of data.
Likewise, support for formats in a variety of public
databases makes it more useful. We shall consider this
issue in more detail below.

5.1 Software Support
The most difficult issue surrounding software support is

that with vague specifications, a piece of software may no-
tionally support a file format, and yet still be incompatible
with other software notionally supporting the same format.

For instance, software might

• be able or unable to cope with multi-graphs;

• fail to accept integers outside a particular range;

• have varying case sensitivity;

• be unable to read the right character set;

• be unable to read strings beyond a particular length
(very few formats specify buffer or string lengths); or

• fail to cope with files larger than some size.

Size is interesting, because almost no documentation exists
for size limits for any data formats. However, it should be
reasonably obvious that if 32 bit integers are used, then the
largest number of (integer) identifiers is around 4 billion. In
the past this was large enough that the need to specify it
may have seemed small. With today’s graphs, this could be
an important limitation.

Even more pernicious is partial support for a format. Even
when documented this makes our job hard, but partial sup-
port is not often documented. Instances include:

• hyper-graphs supported in the format, but not in soft-
ware; or

• some small number of formats make mention of allow-
ing complex numbers; or

• partial support for hierarchy (i.e., the file can be read,
but the subgraph structure is not retained).

Even more complex is the fact that some features may be
supported on read or write, but not both.

Generally, software is designed for a particular purpose,
and when a feature falls outside that purpose, the software
often fails to support it.

Our goal here is not to criticise software, only to provide
some guidance over the level of support for a format, and
the visibility this format has in the general graph-research
community. So instead of determining the exact details of
support for each format, in each piece of software, we will
report the software authors’ claims of support only. The
goal is not to report technical detail so much as the level of
awareness and interest a format engenders.

See the attached spreadsheet for a list of software
and the supported formats.

The list of software is long, but is still a tiny cross-section
of the graph toolkits provided today. We have sampled pri-
marily on the results of simple web searches, but also when
a format was created for a particular piece of software, we
have included that software.

5.2 Public DB support
The other type of support we might wish to see is general

support amongst those who provide data publicly. There
are many public databases that provide example networks
for benchmarking or research. We provide a list of some of
the better known of these with their format choices.

6. TO DO
Evaluate criteria given, and expand on a couple which

could use more detail (e.g., extensible, vs static meta-data).
Check details again.
Other features/descriptors we might like to include:

self-describing : this format data isn’t filled in yet (as
it is yet another rather rubbery term when dealing
with imprecise formats), but it refers to whether a file
provides its own definition of its format.

7. CONCLUSION
The science of graphs and networks needs portable, well-

documented, precisely defined, exchange formats. There are
many existing formats, and this paper seeks to unravel this
mess, most notably with the aim of reducing the number of
new formats developed.

One size probably does not fit all though. There is a clear
need for at least three major types of file format:

• a general, flexible, extensible approach such as GraphML;

• a quick and dirty approach that satisfies the least com-
mon denominator for the exchange of information to/from
the simplest software; and

• a very efficient (compressed) format for very large graphs.

Its not clear that any format at present has a complete
enough list of features to take the roll of the first format. No

doubt this will continue to evolve as well, as new features
are required.

The second is easy, but there are very many contenders,
and settling on one will be hard.

The final one should be seen as an interesting research
topic.

Maybe what is needed is actually a container format: al-
lowing specification of parts of a graph in alternative for-
mats. Or allowing specification of meta-data and labels in
an XML-like format, but the edge data in a more compact
form.

8. REFERENCES
[1] E. Parsonage, H. X. Nguyen, R. Bowden, S. Knight, N. J.

Falkner, and M. Roughan, “Generalized graph products for
network design and analysis,” in 19th IEEE International
Conference on Network Protocols (ICNP), Vancouver, CA,
October 2011.

[2] V. Batagelj and A. Mrvar, “Towards NetML: Networks
markup language,” in International Social Network
Conference, London, July 1995,
vlado.fmf.uni-lj.si/pub/networks/netml/snetml.pdf.

[3] A. Basu and R. W. Blanning, Metagraphs and their
Applications. Springer, 2007, http:
//link.springer.com/book/10.1007%2F978-0-387-37234-1.

[4] “FOAF: friend of a friend,” http://www.foaf-project.org/.

